Learning gas distribution models using sparse Gaussian process mixtures

نویسندگان

  • Cyrill Stachniss
  • Christian Plagemann
  • Achim J. Lilienthal
چکیده

In this paper, we consider the problem of learning two-dimensional spatial models of gas distributions. To build models of gas distributions that can be used to accurately predict the gas concentration at query locations is a challenging task due to the chaotic nature of gas dispersal. We formulate this task as a regression problem. To deal with the specific properties of gas distributions, we propose a sparse Gaussian process mixture model, which allows us to accurately represent the smooth background signal and the areas with patches of high concentrations. We furthermore integrate the sparsification of the training data into an EM procedure that we apply for learning the mixture components and the gating function. Our approach has been implemented and tested using datasets recorded with a real mobile robot equipped with an electronic nose. The experiments demonstrate that our technique is well-suited for predicting gas concentrations at new query locations and that it outperforms alternative and previously proposed methods in robotics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gas Distribution Modeling using Sparse Gaussian Process Mixture Models

In this paper, we consider the problem of learning a two dimensional spatial model of a gas distribution with a mobile robot. Building maps that can be used to accurately predict the gas concentration at query locations is a challenging task due to the chaotic nature of gas dispersal. We present an approach that formulates this task as a regression problem. To deal with the specific properties ...

متن کامل

Tell me about dynamics! Mapping velocity fields from sparse samples with Semi-Wrapped Gaussian Mixture Models

Autonomous mobile robots often require information about the environment beyond merely the shape of the work-space. In this work we present a probabilistic method for mapping dynamics, in the sense of learning and representing statistics about the flow of discrete objects (e.g., vehicles, people) as well as continuous media (e.g., air flow). We also demonstrate the capabilities of the proposed ...

متن کامل

Covariance Kernels from Bayesian Generative Models

We propose the framework of mutual information kernels for learning covariance kernels, as used in Support Vector machines and Gaussian process classifiers, from unlabeled task data using Bayesian techniques. We describe an implementation of this framework which uses variational Bayesian mixtures of factor analyzers in order to attack classification problems in high-dimensional spaces where lab...

متن کامل

Speech Enhancement using Adaptive Data-Based Dictionary Learning

In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...

متن کامل

Streaming Sparse Gaussian Process Approximations

Sparse pseudo-point approximations for Gaussian process (GP) models provide a suite of methods that support deployment of GPs in the large data regime and enable analytic intractabilities to be sidestepped. However, the field lacks a principled method to handle streaming data in which both the posterior distribution over function values and the hyperparameter estimates are updated in an online ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Auton. Robots

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2009